Light Control of Magnetic Order

T JAUK¹, H K HAMPEL¹, J WALOWSKI², K KOMATSU¹, J KREDL², E I HARRIS-LEE³, J K DEWHURST³, M MÜNZENBERG², S SHALLCROSS⁴, S SHARMA⁴, AND M SCHULTZE¹

¹Institute of Experimental Physics, TU Graz, Petersgasse 16, 8010 Graz, Graz, Austria. Contact Phone: +43 316 873 8144

²Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Greifswald, Germany. Contact Phone: +49 3834 420 4780

³ Theory Department, Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Halle, Germany. Contact Phone: +49 345 5582 970

⁴B4, Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, 12489 Berlin, Berlin, Germany. Contact Phone: +49 30 6392 1350

Contact Email: thomas.jauk@tugraz.at

In 1895, Pierre Curie discovered a striking thermodynamic aspect of ferromagnets: their loss of magnetic behavior above a critical temperature. More than a century later, equipped with the tools of ultrafast laser physics, researchers captured the breakdown of magnetic order on its natural timescale in a plethora of different experiments, sparkling a lively and contentious debate about the microscopic origin. However, the fact that the deposition of heat in matter - inevitably associated with the interaction with intense laser pulses - increases the spin entropy was undisputed and ruled out the control of magnetic order at ultrafast times. Using magnetic circular dichroism microscopy in a photoemission geometry and state-of-the-art theory, we demonstrate that femtosecond class linearly polarized laser pulses can indeed induce a reduction in magnetic disorder at a ferromagnet metal/oxide interface. We find a significant transient increase in the average magnetic moment with a persistent change of around 10% and, together with state-of-the-art theory, we shed light on the microscopic processes.