Recent Advances on Laser-Plasma Based Soft X-Ray Lasers

S Sebban¹, A Kabacinsk¹, E Oliva², F Tissandier¹, M Kozlova³, J Goddet¹, I Andriyash¹, C Thaury¹, P Zeitoun1¹, and J Gauthier¹

¹LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
²Universidad Politecnica de Madrid, Madrid, Spain
³ELI Beamlines, Prague, Czech Republic

Contact Email: stephane.sebban@ensta.fr

Intense and short soft X-ray light pulses offer unprecedented possibilities for studying ultrafast phenomena in matter at the nanometer scale. Plasma-based soft X-ray lasers (SXRLs) have the advantage of being compact sources. We report recent achievement aiming to demonstrate the control and reduction of duration of a seeded collisional soft X-ray laser induced by the anticipated interruption of the gain lifetime at high densities. By controlling the peak intensity velocity of an ultrashort beam by spatio-temporal couplings we improve the performances of a seeded soft X-ray laser (SXRL).