Broadband Coherent XUV Light from Electron-Positron Microbunching in an Intense Laser Pulse

M Tamburini¹, M J Quin¹, A Di Piazza^{1,2,3}, and C H $\rm Keitel^1$

¹ Theoretical Quantum Dynamics and Quantum Electrodynamics, Max Planck Institute for Nuclear Physics (MPIK), Heidelberg, Germany

²Department of Physics & Astronomy, University of Rochester, Rochester NY, USA

³Laboratory for Laser Energetics, Rochester NY, USA

Contact Email: Matteo.Tamburini@mpi-hd.mpg.de

Attosecond pulses of XUV light can be produced from electron microbunches passing through an undulator, within a free electron laser (FEL). An optical-FEL (OFEL), which utilizes a counter-propagating laser pulse instead of an undulator, promises to be more compact and tunable than a FEL. Yet, an OFEL is difficult to realize because of the high electron density required, and subsequent high emittance. With numerical simulations, we demonstrate that coherent pulses of XUV light with duration 8 attoseconds at 92 attoseconds intervals can be generated by microbunching of relativistic electrons and positrons (e^{-}/e^{+}) in a laser pulse, of peak intensity 2.2×10^{20} W/cm² and central wavelength 400 nm. The e^{+} provide a restoring force which stabilizes the system, allowing for sustained coherent emission and the rapid formation of microbunches over short distances $\sim 10 \,\mu$ m compared to the typical length of an undulator ~ 10 m.