Excitation Schemes for the Nuclear Clock Candidate ²²⁹Th

T KIRSCHBAUM¹, M PIMON², T SCHUMM², AND A PALFFY¹

¹Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg, Germany ²Atominstitut, TU Wien, Vienna, Austria

Contact Email: tobias.kirschbaum@physik.uni-wuerzburg.de

The thorium ²²⁹Th isotope has attracted increased interest over the past few decades. This is related to its extremely low-lying first excited state at ~ 8 eV with long radiative lifetime of a few 10³ s [1]. These properties render ²²⁹Th an ideal candidate for a nuclear clock with outstanding properties promising a variety of applications [2]. Just recently, the direct laser excitation of the isomeric transition has been reported [3]. However, the experimental realization of the nuclear clock remains challenging due to its relatively large uncertainty on the transition energy and the lack of narrowband VUV lasers.

Here, we investigate theoretically in the first place an approach to indirectly populate ²²⁹Th's isomeric state. We consider Electronic Bridge (EB) schemes in a VUV-transparent crystal environment doped with ²²⁹Th. EB involves electronic defect states which appear in the band gap due to ²²⁹Th doping [4]. We present different EB schemes and the corresponding excitation rates for ²²⁹Th:LiCAF.

Once a more accurate determination of the transition energy is achieved and laser technology provides narrowband VUV sources, one may proceed with resonant driving and metrology applications of ²²⁹Th. To this end, we also study theoretically the interaction of ²²⁹Th with structured light, in particular optical vortex beams carrying orbital angular momentum [5]. We investigate temporal and spatial dynamics in a single ²²⁹Th ion resulting from resonant driving.

References

- [1] S Kraemer, J Moens, M Athanasakis-Kaklamanakis et al., Nature 617, 706 (2023)
- [2] E Peik, T Schumm, M S Safronova, A Pálffy, J Weitenberg and P G Thirolf, Quantum Sci. Technol.
 6, 034002 (2021)
- [3] J Tiedau, M V Okhapkin, K Zhang et al., Phys. Rev. Lett. 132, 182501 (2024)
- [4] B S Nickerson, M Pimon, P V Bilous, J Gugler, K Beeks, T Sikorsky, P Mohn, T Schumm and A Pálffy, Phys. Rev. Lett. 125, 032501 (2020)
- [5] T Kirschbaum, T Schumm and A Pálffy, arXiv:2404.13023v1 (2024)