Universal Dynamics of a Turbulent Superfluid Bose Gas

A D GARCÍA-OROZCO¹, L MADEIRA¹, M A MORENO-ARMIJOS¹, A R FRISTSCH², P E S TAVARES³, P C M CASTILHO¹, A CIDRIM⁴, G ROATI^{5,6}, AND V S BAGNATO^{1,7}

¹Physics and Materials Science, São Carlos Institute of Physics, São Carlos, Brazil

²Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg MD, USA

³Department of Physics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

⁴Department of Physics, Federal University of São Carlos, São Carlos, Brazil

⁵European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy ⁶INO-CNR, Sesto Fiorentino, Italy

⁷Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA Contact Email: arnolgarcia@ifsc.usp.br

We study the emergence of universal scaling in the time-evolving momentum distribution of a harmonically trapped three-dimensional Bose-Einstein condensate, parametrically driven to a turbulent state. We demonstrate that the out-of-equilibrium dynamics post-excitation is described by a single function due to nearby non-thermal fixed points. The observed behavior connects the dynamics of a quantum turbulent state to several far-from-equilibrium phenomena. We present a controllable protocol to explore universality in such systems, obtaining scaling exponents that can serve as reference for future theoretical investigations. Our experimental results thus offer a promising route to investigate the complex dynamics of the quantum turbulent regime under a novel perspective.