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Figure 1: Process-agnostic version or our methodology
for machine learning control of processes via spectroscopy
monitoring, showing its three main components: (1) the
industrial reactor where the controlled process is happen-
ing; (2) the inline spectrometer that measures the real-
time state of the process; (3) the control computer on
which is running the machine learning model that evalu-
ates the monitoring data based on its evolution and com-
mands, carrying out the process to a desired end

The update to Industry 4.0 is already a real-
ity, to which machine learning and real-time mon-
itoring are indispensable tools. In the latter’s case,
spectroscopy is interesting for process monitoring,
with applications in sectors of biotechnology, such
as food and pharmaceutical industries. Notori-
ously, spectroscopy monitoring is able to probe the
physical state of an ongoing process in its finer de-
tails, informing about its dynamics. That infor-
mation can be use to train machine learning mod-
els, which can predict the evolution of a process,
as well as be used for its automation. For such
a control system, three features are required: in-
line spectroscopy, spectroscopic data compression,
and regression modeling of the process. Although
studies linking pairs of those features exist in the
literature, we have not found any substantial in-
vestigation joining them as a single procedure. In
view of that, we have demonstrated a proof of con-
cept for an industrial control system using machine
learning and spectroscopy monitoring, as presented in Fig. 1. Our case-study process was beer mashing,
monitored by Fourier-Transform Infrared (FTIR) spectroscopy, at the spectral range between 2000 and
900 cm−1. For that purpose, we built an inline spectrometer and a nanobrewery at our facilities. We
collected data to train a spectrum compressor (a RBF-kernel PCA model) and a reaction regressor (an
Extra-Trees Random Forest model), used together for predicting the mashing dynamics. By allowing our
models to control that process via a genetic algorithm optimizer, we observed a decrease of up to seven
minutes (∼9%) in mashing time, when compared to a human-made recipe that would mash out beer
wort with the same spectroscopic characteristics predicted by our models. Our findings pose meaningful
contributions to current technology, which we hope to extend of various fields of industry.


