Dynamics of Quantum Nonlinear Scattering in Terms of Stationary States

A Brattley^{1,2}, K Gabriel³, J McCarty³, and K K Das^{3,4}

¹Department of Physics, Yale University, New Haven CT, USA

²Department of Physics, Massachusetts Institute of Technology, Boston MA, USA

³Physical Sciences, Kutztown University of Pennsylvania, Kutztown PA, USA

⁴Physics and Astronomy, SUNY Stony Brook, Stony Brook NY, USA

Contact Email: allison.brattley@vale.edu

We provide a comprehensive study of stationary states in a coherent medium with a quadratic non-linearity in the presence of step, barrier or well potentials in one dimension. The description is in terms of the nonlinear Schrödinger equation and hence applicable to a variety of systems, including interacting ultracold atoms in the mean field regime and light propagation in optical fibers. We show that the full landscape of solutions can be described by a single expression involving Jacobi elliptic function with the inclusion of a complex-valued phase shift. All relevant boundary conditions can be intuitively visualized as intersections of phase space curves. We present a method for utilizing the stationary solutions to describe nonlinear scattering by a barrier potential, that can capture scattering of single wave packets as well interference effects of two counter-propagating wave packets.